Math 522 Exam 3 Solutions

1. For all $k \in \mathbb{N}$, find all real solutions x to the equation $\binom{x}{k}=\binom{x}{k+1}$.

We first use the definition of the binomial coefficient to get $\frac{1}{k!} x \underline{\underline{\mathbf{k}}}=\frac{1}{k!} x(x-1) \cdots(x-k+1)=\frac{1}{(k+1)!} x(x-1) \cdots(x-$ $k+1)(x-k)$. Multiplying by $(k+1)$! on both sides, we get $(k+1) x^{\mathrm{k}}=(x-k) x^{\mathrm{k}}$. Moving to one side we get $(x-2 k-$ 1) $x^{\underline{\mathrm{k}}}=0$. This has $k+1$ solutions, namely $x=0,1, \ldots,(k-$ 1), $(2 k+1)$.
2. Use the binomial theorem to prove that the following identity holds for all even $n \in \mathbb{N}_{0}$:

$$
1-\binom{n}{1}+\binom{n}{2}-\binom{n}{3}+\binom{n}{4}-\cdots+\binom{n}{n-2}=n-1
$$

We use the binomial theorem with $x=-1, y=1$ to get $0^{n}=$ $1-\binom{n}{1}+\binom{n}{2}-\binom{n}{3}+\binom{n}{4}-\cdots+(-1)^{n-2}\binom{n}{n-2}+(-1)^{n-1}\binom{n}{n-1}+$ $(-1)^{n}\binom{n}{n}=L H S-n+1$, where we need n to be even so that $(-1)^{n-1}=-1$ and $(-1)^{n}=1$.

